

Such a model in the equinoctial elements is given in Refs. 15-17. Green¹⁵ considered the effect of holding the moon's position constant during one satellite orbit. He noted that the major impact is in the short-periodic motion. While Ref. 1 emphasizes the moon's motion as a source of second-order coupling, there is also the possibility of coupling between the J_2 secular effects and the shallow tesseral resonance oscillations that occur in near-geosynchronous orbits.

Finally, a double-averaging theory (see Collins¹⁸) is also an appropriate tool for analyzing the very long-term motion of near-geostationary orbits.¹⁹

References

- ¹Van der Ha, J.C., "Long-Term Evolution of Near-Geostationary Orbit," *Journal of Guidance, Control, and Dynamics*, Vol. 9, May-June 1986, pp. 363-370.
- ²Cefola, P.J., "Equinoctial Orbit Elements—Application to Artificial Satellite Orbits," *AIAA Paper 72-937*, Sept. 1972.
- ³Cefola, P., Long, A., and Holloway, G., "The Long-Term Prediction of Artificial Satellite Orbits," *AIAA Paper 74-170*, Feb. 1974.
- ⁴Broucke, R.A., "A Fortran-4 System for the Manipulation of Symbolic Poisson Series with Applications to Celestial Mechanics," IASOM, University of Texas, Austin, Paper IASOM-TR-80-3, 1980.
- ⁵Cefola, P. and R. Broucke, "On the Formulation of the Gravitational Potential in Terms of Equinoctial Variables," *AIAA Paper 75-0009*, Jan. 1975.
- ⁶Long, A.C. and Early, L., *System Description and User Guide for the GTDS R&D Averaged Orbit Generator*, CSC/SD-78/6020, Nov. 1978.
- ⁷Janin, G., "How Long Do Our Satellites Live?" *ESA Bulletin*, No. 45, Feb. 1986, pp. 34-39.
- ⁸Cefola, P., "A Recursive Formulation for the Tesseral Disturbing Function in Equinoctial Variables," *AIAA Paper 76-839*, Aug. 1976.
- ⁹National Bureau of Standards, *Applied Mathematics Series: Handbook of Mathematical Functions*, edited by M. Abramowitz and I. Stegun, Washington, DC, 1964.
- ¹⁰Hansen, P.A., "Entwicklung des Products einer Potenz des Radius Vectors mit dem Sinus oder Cosinus eines Vielfachen der Wahren Anomalie in Reihen," *Abhandlungen der Mathematisch-Physischen Klasse der Königlich Sächsischen Gesellschaft der Wissenschaften*, Vol. 2, Leipzig: 1855, pp. 181-281; English trans. by J.C. Van der Ha, Mission Analysis, European Space Operations Center, Robert Bosch Str. 5, 6100 Darmstadt, FRG, 1978-1979.
- ¹¹Proulx, R., "Mathematical Description of the Tesseral Resonance and Resonant Harmonic Coefficient Solve-For Capabilities," Draper IOC NSWC-001-15z-RJP, April 13, 1982.
- ¹²Proulx, R. and W. McClain, "Series Representation and Rational Approximations for Hansen Coefficients," *AIAA Paper 82-0073*, Jan. 1982.
- ¹³Douglas, B.C., J.G. Marsh, and N.E. Mullins, "Mean Elements of GEOS 1 and GEOS 2," *Journal of Celestial Mechanics*, Vol. 7, No. 2, pp. 195-204.
- ¹⁴Bowman, B.R., "Analysis of Mean Elements of Three U.S. Navy Navigation Satellites for the Period 1974-1976," *Journal of Celestial Mechanics*, Vol. 19, No. 2, pp. 203-211.
- ¹⁵Green, A.J., "Orbit Determination and Prediction Processes for Low Altitude Satellites," Ph.D. Dissertation, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, Dec. 1979.
- ¹⁶Slutsky, M., *Zonal Harmonic Short-Periodic Model*, Draper Laboratory, Division 15z, IOC, PL-016-81-MS, Nov. 30, 1981; see also AIAA Paper 80-1658, 1980.
- ¹⁷Proulx, R., McClain, W., Early, L., and Cefola, P., "A Theory for the Short-Periodic Motion Due to the Tesseral Harmonic Gravity Field," Paper AAS-81-180, Aug. 1981.
- ¹⁸Collins, S.K., "Long Term Prediction of High Altitude Orbits," Ph.D. Dissertation, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, March 1981.
- ¹⁹Cefola, P., "Long-Term Orbital Motion of the Desynchronized Westar II," Draper Working Paper PL-251-15Z-PJC, May 1986.

Reply by Author to P. Cefola

Jozef C. Van der Ha*

European Space Operations Centre
Darmstadt, Federal Republic of Germany

THE author is grateful to Dr. Cefola for his keen interest in Ref. 1 and for pointing out the connection between the results of Ref. 1 and other formulations. It is unfortunate that essentially all references quoted by Dr. Cefola are either conference papers or internal notes, which limits their dissemination considerably. Perhaps it would be of interest to summarize their principal results in an archival publication.

When Ref. 1 is compared with other results, it should not be overlooked that the scope of Ref. 1 was limited to providing useful results for just one specific, but extremely important, class of orbits. No attempt at generalization of the results of Ref. 1 was made. It is believed that a practicing engineer dealing with geostationary orbits would prefer the explicit closed-form results of Ref. 1 to the more general but recursive formulation suggested by Dr. Cefola.

Concerning the use of the equinoctial elements, it is felt that proper credit was given to earlier work by referring to the archival publication by Broucke and Cefola (Ref. 12 in Ref. 1). The derivation of Eqs. (3) in Ref. 1 was, in fact, carried out independently using Campbell's formulation (details are described in an internal ESOC report²).

The form of Dr. Cefola's general result for the averaged third-body potential, as described in his Eqs. (1) and (2), shows complete agreement with Eqs. (18-20) of Ref. 1. Whereas the recursive code, as advocated by Dr. Cefola, would offer advantages from an overall generality and flexibility of point of view, the explicit results of Ref. 1 are of more practical value for the specific case of a near-geostationary orbit. The remark by Dr. Cefola that the Poisson series analysis must be revisited each time when the orbital-type changes should be seen in the same light.

The comments by Dr. Cefola on the zonal and tesseral harmonics formulation are of the same nature as those on the potential development and can therefore be answered by the same argument.

The procedure for obtaining initial conditions for the mean elements that was adopted in Ref. 1 is rather straightforward since it was needed only for establishing the accuracy of the long-term model and not for an accurate orbit prediction. The improvements in this procedure suggested by Dr. Cefola could have a slightly beneficial effect on the accuracies quoted in Table 3 of Ref. 1.

Finally, it is noted that the verification of the coupling between J_2 secular effects and shallow tesseral resonances would require a number of controlled simulation runs and cannot be commented on now.

References

- ¹Van der Ha, J.C., "Long-Term Evolution of Near-Geostationary Orbit," *Journal of Guidance, Control, and Dynamics*, Vol. 9, May-June 1986, pp. 363-370.
- ²Van der Ha, J.C., "Perturbation Equations for Near-Geostationary Orbits," MAD Working Paper 116, European Space Operations Centre, Darmstadt, FRG, Dec. 1979.

Received Aug. 5, 1986. Copyright © American Institute of Aeronautics and Astronautics, Inc., 1987. All rights reserved.

*Senior Analyst. Member AIAA.